Contents lists available at ScienceDirect

Journal of Organometallic Chemistry

journal homepage: www.elsevier.com/locate/jorganchem

Hydrostannation of norbornadiene by ⁿBu₃SnH and Ph₃SnH with molybdenum catalysts

Magdalena Zyder, Teresa Szymańska-Buzar*

Faculty of Chemistry, University of Wrocław, ul. F. Joliot-Curie 14, 50-383 Wrocław, Poland

A R T I C L E I N F O

Article history: Received 11 January 2010 Received in revised form 16 March 2010 Accepted 21 March 2010 Available online 21 April 2010

Keywords: Hydrostannation Norbornadiene Molybdenum catalyst Photolysis Stannylnorbornene

1. Introduction

Hydrostannation of alkynes and alkenes is widely used in organic synthesis due to various applications of organostannane compounds as starting materials for further transformations [1–11]. Palladium complexes are applied the most frequently as catalysts for that reaction. However, as was recently discovered molybdenum carbonyl complexes can also be used as catalysts for the hydrostannation reaction [6-10]. In the presence of the molybdenum complex $[MoBr(\eta^3-C_3H_5)(CO)_2(NCMe)_2]$, tributyltin hydride instantaneously adds to various alkynes to give the corresponding vinylstannanes in good yields under mild conditions. The molybdenum complex showed comparable or even better selectivity than the palladium complex [PdCl₂(PPh₃)₂] in the case of certain sterically hindered alkynes [6]. Another molybdenum complex, $[Mo(CO)_3(CN-t-Bu)_3]$, was found to be a catalyst for the hydrostannation reaction by Kazmaier et al. [7–10]. In the presence of this catalyst, the hydrostannation of propargylic alcohols, ethers, amines, and amides gave rise to functionalized vinylstannanes in good yield. However, up to now, there have been few examples of the hydrostannation of alkenes or dienes and none with a molybdenum catalyst [1,11]. As was described by Neumann and Sommer, the hydrostannation of conjugated dienes, such as butadiene, cyclopentadiene and cyclohexadiene by organotin hydrides has been realized with high yield under free-radical conditions [11].

ABSTRACT

Photochemically activated [Mo(CO)₆] and [Mo(CO)₄(η^4 -nbd)] are demonstrated to be good catalysts for the hydrostannation of norbornadiene (nbd) by stannyl hydrides (^{*n*}Bu₃SnH and Ph₃SnH) to give stannylnorbornene in *ca*. 100% yield. The reaction was carried out at room temperature in *n*-heptane (20 cm³) with continued photolysis (2 h) at Mo(CO)₆: R₃SnH:nbd = 1:50:50.

© 2010 Elsevier B.V. All rights reserved.

Although the mechanism of the transition-metal-catalyzed hydrostannation reaction is not very well investigated, it has been postulated that it involves such steps as oxidative addition of the Sn-H bond of R₃SnH to the transition metal, hydrometallation of an unsaturated bond of the coordinated organic substrate, and reductive elimination of the product. The very important first step in this reaction can be realized only with an electron-rich transition metal, i.e. one in a low oxidation state. The activation of the Si-H bond of silanes and the Ge-H bond of germanes by photochemically activated molybdenum carbonyl complexes has recently been observed by spectroscopic methods (IR, NMR) in solution at low temperatures [12-15] and successfully applied in molybdenumcatalyzed hydrosilylation and hydrogermylation of norbornadiene (nbd). This inspired us to test the catalytic activity of $[Mo(CO)_6](1)$ and $[Mo(CO)_4(\eta^4-nbd)]$ (2) in the hydrostannation of nbd, which can give stannylnorbornene (R₃Sn-nbe).

In this paper, we present the hydrostannation of nbd by ^{*n*}Bu₃SnH and Ph₃SnH, giving respectively tributylstannylnorbornene (^{*n*}Bu₃Sn-nbe) or triphenylstannylnorbornene (Ph₃Sn-nbe) (Scheme 1).

2. Experimental

2.1. General remarks

All reactions were performed using standard Schlenk techniques under an atmosphere of nitrogen and with freshly distilled substrates and solvents. $Mo(CO)_6$ (1), ^{*n*}Bu₃SnH, and Ph₃SnH

^{*} Corresponding author. Tel: +48 71 375 7221; fax: +48 71 328 23 48. *E-mail address*: tsz@wchuwr.chem.uni.wroc.pl (T. Szymańska-Buzar).

⁰⁰²²⁻³²⁸X/\$ – see front matter @ 2010 Elsevier B.V. All rights reserved. doi:10.1016/j.jorganchem.2010.03.023

Scheme 1. Transformation of nbd in the presence of photochemically activated Mo $(CO)_6$ and tin hydrides R₃SnH (R = ^{*n*}Bu, Ph).

(Aldrich) were used as received. The norbornadiene compound [Mo $(CO)_4(\eta^4-nbd)$] (**2**) was obtained from a photochemical reaction of Mo $(CO)_6$ and nbd in *n*-heptane solution and purified by sublimation [16–18]. The photolysis source was an HBO 200 W high-pressure Hg lamp.

¹H, ¹³C NMR, and two-dimensional ¹H–¹H COSY and ¹H–¹³C HMQC NMR spectra were recorded with a Bruker AMX 300 or 500 MHz instrument. All proton and carbon chemical shifts were referenced to the residual proton signal for ¹H NMR (δ 7.24 CDCl₃ and 1.40 C₆D₁₂) or the natural abundant carbon signal of the solvent for ¹³C NMR (δ 77.0 CDCl₃ and 26.4 C₆D₁₂). ¹¹⁹Sn NMR chemical shifts were referenced relative to Ph₃SnCl (δ –44.7) used as external standard.

2.2. General procedure for hydrostannation of nbd by ${}^{n}Bu_{3}SnH$ or $Ph_{3}SnH$ in the presence of $Mo(CO)_{6}$

A solution of $Mo(CO)_6$ (0.005 g, 0.019 mmol), nbd (0.087 g, 0.1 cm³, 0.95 mmol), and ^{*n*}Bu₃SnH (0.25 cm³, 0.95 mmol) or Ph₃SnH (0.28 g, 0.95 mmol) in *n*-heptane solution (20 cm³) was stirred and irradiated at room temperature for 2 h. All volatile materials were then evaporated under reduced pressure at room temperature, and the residue was analyzed by NMR spectroscopy, which revealed the formation of ^{*n*}Bu₃Sn-nbe or Ph₃Sn-nbe as a mixture of *endo* and *exo* isomers at an almost 50/50 ratio.

2.3. NMR characteristic of hydrostannation products

endo-^{*n*}Bu₃Sn-nbe: ¹H NMR (δ , CDCl₃, 300 MHz): 5.96 (dd, ³*J*_{H-H} = 5.5 Hz, ⁴*J*_{H-H} = 2.9 Hz, 1H, HC²), 5.91 (dd, ³*J*_{H-H} = 5.5 Hz, ⁴*J*_{H-H} = 3.0 Hz, 1H, HC³), 3.03 (s, 1H, HC⁴), 2.89 (s, 1H, HC¹), 1.95 (ddd, ²*J*_{H-H} = 11.4 Hz, ³*J*_{H-H} = 9.5 Hz, ⁴*J*_{H-H} = 3.6 Hz, 1H, H₂C⁶), other signals: 1.5 (1H, H₂C⁶), 1.4 (1H, H₂C⁷), 1.2 (1H, HC⁵) and 1.1 (1H, H₂C⁷), were obscured by multiplet signals due to the ^{*n*}Bu groups centered at 1.50, 1.32, and 0.90 ppm and were identified in ¹H-¹H COSY and ¹H-¹³C HMQC spectra. ¹³C{¹H} NMR (δ , CDCl₃, 75 MHz): 135.3 (1C, HC²), 135.0 (1C, ³*J*_{C-Sn} = 22 Hz, HC³), 50.4 (1C, ³*J*_{C-Sn} = 46 Hz, H₂C⁷), 46.1 (1C, HC⁴), 41.8 (1C, ³*J*_{C-Sn} = 18 Hz, HC¹), 29.4 (3C, (1C, ²*J*_{C-Sn} = 19 Hz, CH₂-^{*n*}Bu), 28.1 (1C, H₂C⁶), 27.6 (3C, ³*J*_{C-Sn} = 47 Hz, CH₂-^{*n*}Bu), 21.1 (1C, ¹*J*_{C-Sn} = 362/378 Hz, ¹¹⁷Sn/¹¹⁹Sn, HSnC⁵), 13.7 (3C, CH₃-^{*n*}Bu), 9.2 (3C, ¹*J*_{C-Sn} = 295/308 Hz, ¹¹⁷Sn/¹¹⁹Sn, SnCH₂-^{*n*}Bu).

exo-^{*n*}Bu₃Sn-nbe: ¹H NMR (δ , CDCl₃, 300 MHz) 6.05 (dd, ³J_{H-H} = 5.5, ⁴J_{H-H} = 2.7 Hz, 1H, HC³), 5.83 (dd, ³J_{H-H} = 5.5, ⁴J_{H-H} = 3.1 Hz, 1H, HC²), 2.95 (s, 1H, HC¹), 2.85, (s, 1H, HC⁴), 1.75 (ddd, ²J_{H-H} = 11.4 Hz, ³J_{H-H} = 5.1 Hz, ⁴J_{H-H} = 3.6 Hz, 1H, H₂C⁶), other signals: 1.5 (1H, H₂C⁶), 1.2 (1H, HC⁷), 1.0 (1H, H₂C⁷), 0.7 (1H, H₂C⁵) were obscured by multiplet signals due to the ^{*n*}Bu groups centered at 1.50, 1.32, and 0.90 ppm and were identified in ¹H-¹H COSY and ¹H-¹³C HMQC spectra. ¹³C{¹H} NMR (δ , CDCl₃, 75 MHz): 136.7 (1C, ³J_{C-Sn} = 50 Hz, HC³), 132.1 (1C, HC²), 48.1 (1C, H₂C⁷), 45.0 (1C, HC⁴), 43.0 (1C, HC¹), 29.3 (3C, CH₂-^{*n*}Bu), 28.6 (1C, H₂C⁶), 27.5 (3C, ³J_{C-Sn} = 50 Hz, CH₂-^{*n*}Bu), 20.2 (1C, ¹J_{C-Sn} = 313/327 Hz,

¹¹⁷Sn/¹¹⁹Sn, HSnC⁵), 13.7 (3C, CH₃–^{*n*}Bu), 8.8 (3C, ${}^{1}J_{C-Sn} = 291/$ 304 Hz, ${}^{117}Sn/{}^{119}Sn$, SnCH₂–^{*n*}Bu).

endo-Ph₃Sn-nbe: ¹H NMR (δ , CDCl₃, 300 MHz): 7.8–7.4 m, 15H, Ph), 6.09 (dd, ${}^{3}J_{H-H} = 5.6$ Hz, ${}^{4}J_{H-H} = 2.8$ Hz, 1H, HC²), 6.03 (dd, ${}^{3}J_{H-H} = 5.6$ Hz, ${}^{4}J_{H-H} = 2.8$ Hz, 1H, HC³), 3.44 (s, 1H, HC⁴), 3.08 (s, 1H, HC¹), 2.30 (m, 2H, HC⁵, H₂C⁶), 1.61 (m, 2H, H₂C⁶, H₂C⁷), 1.29 (d, 1H, ${}^{2}J_{H-H} = 8.4$ Hz, H_2C^7). ${}^{13}C{}^{1}H{}$ NMR (δ , CDCl₃, 125 MHz): 139–128 (18C, Ph), 136.0 (1C, HC²), 135.5 (1C, ${}^{3}J_{C-Sn} = 28$ Hz, HC³), 50.0 (1C, ${}^{3}J_{C-Sn} = 58$ Hz, H₂C⁷), 45.8 (1C, ${}^{2}J_{C-Sn} = 11$ Hz, HC⁴), 41.9 (1C, ${}^{3}J_{C-Sn} = 23$ Hz, HC¹), 28.3 (1C, H₂C⁶), 24.8 (1C, ${}^{1}J_{C-Sn} = 458/478$ Hz, ${}^{117}Sn/{}^{119}Sn$, HSnC⁵).

exo-Ph₃Sn-nbe: ¹H NMR (δ , CDCl₃, 300 MHz): 7.8–7.4 m, 15H, Ph), 6.24 (dd, ³*J*_{H-H} = 5.6 Hz, ⁴*J*_{H-H} = 2.8 Hz, 1H, HC³), 6.05 (dd, ³*J*_{H-H} = 5.6 Hz, ⁴*J*_{H-H} = 2.8 Hz, 1H, HC²), 3.30 (s, ³*J*_{H-Sn} = 25 Hz, 1H, HC⁴), 3.08 (s, 2H, HC¹), 2.21 (ddd, ²*J*_{H-H} = 10 Hz, ³*J*_{H-H} = 7 Hz, ⁴*J*_{H-H} = 3.5 Hz, 1H, H₂C⁶), 1.59 (m, 1H, H₂C⁶), 1.42 (d, 1H, ²*J*_{H-H} = 9.5 Hz, H₂C⁷) 1.25 (d, 1H, ²*J*_{H-H} = 9.5 Hz, H₂C⁷). ¹³C{¹H} NMR (δ , CDCl₃, 125 MHz): 139–128 (18C, Ph), 136.5 (1C, ³*J*_{C-Sn} = 61 Hz, HC³), 133.2 (1C, HC²), 48.1 (1C, H₂C⁷), 45.0 (1C, HC⁴), 43.4 (1C, ³*J*_{C-Sn} = 11 Hz, HC¹), 28.2 (1C, H₂C⁶), 22.8 (1C, ¹*J*_{C-Sn} = 393/412 Hz, ¹¹⁷Sn/¹¹⁹Sn, HSnC⁵).

¹¹⁹Sn{¹H} NMR (186.5 MHz, CDCl₃, 298 K): $\delta = -89.6$ and -91.4 for *endo*-Ph₃Sn-nbe and *exo*-Ph₃Sn-nbe.

2.4. General procedure for reaction in NMR tube

The course of the hydrostannation reaction was also followed by ¹H NMR spectroscopy. As a general procedure for NMR experiments, complex **2** (*ca*. 0.01 g, 0.03 mmol) was weighed into an NMR tube. The tube was then capped with a septum. A portion of ⁿBu₃SnH (*ca*. 0.03 cm³) and C₆D₁₂ (0.7 cm³) was then added to the NMR tube via a syringe. The tube was periodically irradiated and monitored by ¹H NMR spectroscopy over the desired length of time at 10 °C.

3. Results and discussion

3.1. Hydrostannation of nbd initiated by photochemically activated molybdenum(0) complexes **1** or **2**

The hydrostannation of nbd by ⁿBu₃SnH in the presence of a catalytic amount (ca. 2 mol%) of the molybdenum complex 1 or 2 gave ^{*n*}Bu₃Sn-nbe, which was identified by NMR methods (¹H, ¹³C $\{^{1}H\}$, $^{1}H-^{1}H$ COSY, and $^{1}H-^{13}C$ HMQC) as a *ca*. 50/50 mixture of endo and exo isomers. The endo isomer alone was observed only during the monitoring of photochemical reaction of 2 with ⁿBu₃SnH by ¹H NMR spectroscopy in C₆D₁₂ solution. The olefin proton signals of *endo*-^{*n*}Bu₃Sn-nbe appeared at the beginning of the reaction as two equal-intensity multiplets at δ = 5.96 and 5.91. In the mixture of products isolated from prolonged (2 h) reaction catalyzed by photochemically activated **1**, ^{*n*}Bu₃Sn-nbe was detected by ¹H NMR in ca. 100% yield, as a mixture (ca. 1:1) of endo and exo stereoisomers due to four equal-intensity olefin proton signals in the region of 6.1–5.8 ppm (Fig. 1). The ¹³C{¹H} NMR spectrum of ⁿBu₃Sn-nbe shows fourteen carbon signals due to seven carbons of the norbornyl moiety. Several signals clearly show satellites due to coupling with the tin atom (¹¹⁷Sn and ¹¹⁹Sn, I = 1/2, natural abundance of 7.61% and 8.58%). The highest value of the $^{13}\mathrm{C}-^{117}\mathrm{Sn}/^{119}\mathrm{Sn}$ coupling constant was obtained for signals at δ 21.1 (${}^{1}J_{C-Sn} = 362/$ 378 Hz) and δ 20.2 (¹ $J_{C-Sn} = 313/327$ Hz). These resonances can thus be assigned to carbons adjacent to the tin atom (C^5) of the *endo* and exo isomers of ⁿBu₃Sn-nbe. The coupling constants through three bonds: ${}^{3}J_{C-Sn} = 50$, 22, and 18 Hz, were obtained respectively for signals at δ 50.4 (H₂C⁷), 135,0 (HC³) and 41.8 (HC¹) of the *endo*

Fig. 1. (a) ¹³C{¹H} NMR spectrum (75 MHz, CDCl₃) and (b) ¹H NMR spectrum (300 MHz, C₆D₁₂) of ^{*n*}Bu₃Sn-nbe. The characteristic carbon and proton signals are presented with the scale expansion. The proton and carbon signal denoted by S is due to CDCl₃.

isomer, and ${}^3\!J_{C-Sn}\!=\!50\,\text{Hz}$ for signal at δ 136.7 (HC^3) of the exo isomer.

A similar analysis of NMR data of products obtained in reaction of Ph₃SnH and nbd made it possible to detect Ph₃Sn-nbe as a *ca*. 50:50 mixture of *endo* and *exo* isomers.

However, the formation of Ph₃Sn-nbe is always accompanied by the appearance of stannyl-substituted tricyclane, which was identified due to carbon signals, of very low intensity compared with signals of Ph₃Sn-nbe, at δ = 34.5, 34.4, 33.8, 33.1, 14.1, 10.7 and 10.2 ppm,

3.2. Activation of the H–Sn bond of stannane in photochemical reaction of complex ${\bf 2}$

Monitoring the reaction of **2** with ^{*n*}Bu₃SnH in C₆D₁₂ solution at 10 °C by ¹H NMR spectroscopy allowed us to observe the decay of proton resonance arising from the H–Sn bond of ^{*n*}Bu₃SnH (δ = 4.82, septet, ³J_{H–H} = 2 Hz, ¹J_{H–Sn} = 1541/1609 Hz, ¹¹⁷Sn/¹¹⁹Sn), and the appearance of several high-field resonances, in the region characteristic of hydride ligands, at δ = -4.59 (J_{H–Sn} = 85 Hz), -5.46 (J_{H–Sn} = 116 Hz), -5.68 (J_{H–Sn} = 97 Hz), -5.91 (J_{H–Sn} = 267 Hz),

Fig. 2. Partial (hydride region) ¹H NMR spectrum (300 MHz, C₆D₁₂, 10 °C) showing hydride signals of compounds formed during photochemical reaction the norbornadiene complex 2 and ⁿBu₃SnH. Asterisks denote ^{117/119}Sn satellites (*I* = ½, 7.61/8.58%).

Scheme 2. The formation of "Bu₃Sn-nbe in photochemical reaction of the norbornadiene complex 2 and ⁿBu₃SnH.

 $-6.31 (J_{H-Sn} = 524 \text{ Hz}), -6.49 (J_{H-Sn} = 92 \text{ Hz}), \text{ at an approximate}$ intensity ratio of 1:1.7:0.7:1.7:2:0.7 (Fig. 2 and Fig. 1S on Appendix A). The detection of distinctly different J_{H-Sn} coupling constants of the hydrides indicates evidently different interactions of the H-Sn bond with the molvbdenum atom in each of the new complexes formed during photolysis of **2**. In the low-field region of the ¹H NMR spectrum, two new, equal-intensity signals at $\delta = 4.61$ and 3.82 ppm, $(t, J_{H-H} = 2.5 \text{ Hz})$ can be assigned to four olefin protons in the new norbornadiene complex. The intensity of one of those signals was integrated as 2 in comparison to the intensity of the hydride ligand, at $\delta = -4.59$, integrated as 1. Other signals of norbornadiene moiety were not detected; they are obscured by signals of ⁿBu₃Sn-nbe formed selectively as the *endo* isomer in this reaction. However, within a few minutes all the hydride signals decayed, except the one at $\delta = -6.49$. It must be noted that photolysis of complex 2 in the presence of an excess of ⁿBu₃SnH and nbd leads to the formation of *endo* and *exo* isomers of ⁿBu₃Sn-nbe, like in a reaction catalyzed by complex **1**.

To the best of our knowledge, these are the first results clearly showing that in the initial step of hydrostannation catalyzed by a molybdenum complex containing a diene ligand, the H-Sn bond of ^{*n*}Bu₃SnH is coordinated to the molybdenum center. The η^2 coordination of the H-Sn bond to the molybdenum center leads to its activation (oxidative addition) followed by the addition of the η^2 -H–Sn^{*n*}Bu₃ ligand to the olefin bond. The reaction pathway could be interpreted as depicted in Scheme 2. The reaction proceeds via σ -complex formation followed by oxidative addition of the H–Sn bond to a coordinatively unsaturated molybdenum(0) species formed during photolysis. Subsequent η^4 -nbd ligand insertion into the Mo–H bond leads to the formation of the η^1 -norbornylene ligand. Finally, reductive elimination stereoselectively gives endo-ⁿBu₃Sn-nbe and a coordinatively unsaturated molybdenum (0) carbonyl species, which is the true catalyst for the hydrostannation reaction.

4. Conclusions

To sum up, we have succeeded in generating stannylnorbornenes as a result of hydrostannation of nbd by tin hydrides (ⁿBu₃SnH and Ph₃SnH) catalyzed by photochemically activated Mo (CO)₆. In reaction carried out at room temperature in *n*-heptane solution with continued photolysis (2 h) at Mo(CO)₆: R₃SnH: nbd = 1:50:50, ca. 100% yield of hydrostannation products was achieved. Analysis of ¹H NMR spectra, revealed the formation of ^{*n*}Bu₃Sn-nbe or Ph₃Sn-nbe as a mixture of *endo* and *exo* isomers at an almost 50/50 ratio for all catalytic reaction tested. The endo isomer alone was observed only during the monitoring of photochemical reaction of $[Mo(CO)_4(\eta^4-nbd)]$ with ^{*n*}Bu₃SnH by ¹H NMR spectroscopy in C₆D₁₂ solution.

The hydrostannation was observed step by step during the monitoring of the photochemical reaction of the norbornadiene complex $[Mo(CO)_4(\eta^4-nbd)]$ with ⁿBu₃SnH by ¹H NMR spectroscopy in C₆D₁₂ solution at 10 °C. The initially formed intermediate complexes of molybdenum containing the η^2 -H–SnⁿBu₃ or hydride and stannyl ligands were detected by ¹H NMR spectroscopy due to high-field hydride resonances.

Acknowledgements

This work was generously supported by the Polish Ministry of Science and Higher Education (Grant No. N204 288 534). Authors are grateful to S. Baczyński for measurements of NMR spectra.

Appendix. Supplementary material

Supplementary data associated with this article can be found, in the online version, at doi:10.1016/j.jorganchem.2010.03.023.

References

- [1] N.D. Smith, J. Mancuso, M. Lautens, Chem. Rev. 100 (2000) 3257-3282.
- [2] M.F. Semmelhack, R.J. Hooley, Tetrahedron Lett. 44 (2003) 5737-5739.
- [3] J. Mancuso, M. Lautens, Org. Lett. 5 (2003) 1653-1655.
- M. Cai, X. Fang, R. Dai, L. Zha, Appl. Organomet. Chem. 23 (2009) 229-234. [5] T. Suzuki, J.-I. Atsumi, T. Sengoku, M. Takashi, H. Yoda, J. Organomet. Chem. 695 (2010) 128-136.
- H.X. Zhang, F. Guibé, G. Balavoine, J. Org. Chem. 55 (1990) 1857-1867.
- U. Kazmaier, D. Schauss, M. Pohlman, Org. Lett. 1 (1999) 1017-1019.
- U. Kazmaier, M. Pohlman, D. Schauβ, Eur. J. Org. Chem. (2000) 2761–2766.
- S. Braune, U. Kazmaier, J. Organomet. Chem. 641 (2002) 26-29.
- [10] H. Lin, U. Kazmaier, Eur. J. Org. Chem (2007) 2839-2849.
- [11] W.P. Neumann, R. Sommer, Liebigs Ann. Chem. 701 (1967) 28-39.
- [12] S.L. Matthews, V. Pons, D.M. Heinekey, Inorg. Chem. 45 (2006) 6453-6459.
- [13] M. Stosur, T. Szymańska-Buzar, J. Mol. Catal., A: Chem. 286 (2009) 98-105. [14] M. Zyder, A. Kochel, J. Handzlik, T. Szymańska-Buzar, Organometallics 28 (2009) 5857-5865.
- [15] M. Zyder, T. Szymańska-Buzar, J. Organomet. Chem. 694 (2009) 2110-2113.
- [16] S. Zang, G.R. Dobson, Inorg. Chem. 29 (1990) 598-602.
- [17] S.A. Jackson, P.M. Hodges, M. Poliakoff, J.J. Turner, F.-W. Grevels, J. Am. Chem. Soc. 112 (1990) 1221-1233.
- [18] P.M. Hodges, S.A. Jackson, J. Jacke, M. Poliakoff, J.J. Turner, F.-W. Grevels, J. Am. Chem. Soc. 112 (1990) 1234-1244.